

Auger spectroscopy of Fulminic acid, HCNO

M. Gerlach,^[a] T. Preitschopf,^[a] E. Karaev,^[a] H. Lara,^[a] D. Mayer,^[b]

J. Bozek,^[c] R. Fink,^[d] I. Fischer^[a]

[a] Institute of Physical and Theoretical Chemistry, University of Würzburg, 970704 Würzburg, Germany ^[b] Institut für Physik und Astronomie, Universität Potsdam, 14476 Potsdam-Golm, Germany [c] Synchrotron SOLEIL, 91192 Gif-Sur-Yvette, France

^[d] Institut für Physikalische und Theoretische Chemie, Universität Tübingen, 72076 Tübingen, Germany

Motivation

- HCNO has been observed numerous times in the interstellar medium.
- Alongside with Isocyanic acid, HNCO, a prebiotic role has been suggested for these molecules
- Our group already investigated the auger spectra and subsequent fragmentation products of Isocyanic acid

General

Goals

- Investigate the non-resonant and resonant auger process initiated by soft x-ray radiation.
- Compare the spectra to those of isocyanic • acid
- Conduct quantum chemical calculations lacksquareto produce simulations in order to further elucidate the nature of the observed transitions

Experimental details

Synthesis of HCNO

PLEIADES Beamline

- 5 500 eV light produced by Apple II HU80 Undulator
- Electrons were detected using a SCIENTA VG 4000 hemispherical analyser. Spectral resolution: 37.5 meV Theory
- Auger transition rates were calculated using the the one-center approximation employing the Fermi-Wentzel golden rule

• We successfully recorded the auger electron

spectra of fulminic acid

• Experiment and theory show good agreement

• Conduct auger electron photoion coincidence measurements using the EPICEA detector setup at the PLEIADES beamline

