# **Curriculum Vitae**

## Takeshi MAEDA

Assistant Professor Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University



# **Relevant Data**

| Date of Birth:   | December 21, 1977                                     |
|------------------|-------------------------------------------------------|
| Place of Birth:  | Osaka, Japan                                          |
| Gender:          | Male                                                  |
| Nationality:     | Japanese                                              |
| Present Address: | Gakuen-cho 1-1, Naka-ku, Sakai, Osaka 599-8531, Japan |
| Tel:             | +81-72-254-9329                                       |
| Fax:             | +81-72-254-9910                                       |
| E-mail:          | tmaeda©chem.osakafu-u.ac.jp                           |

# **Education**

- 2001. 3 Bachelor of Engineering, Osaka Prefecture University
- 2003. 3 Master of Engineering, Osaka Prefecture University
- 2006. 3 Doctor of Engineering, Tokyo Institute of Technology (Prof. T. Takata)

## **Employment Experience**

| 2006. 4 ~ 2007. 12 | Researcher                                                            |
|--------------------|-----------------------------------------------------------------------|
|                    | Yashima Super-Structured Helix Project, Exploratory Research for      |
|                    | Advanced Technology (ERATO), Japan Science and Technology Agency      |
|                    | (JST), Japan                                                          |
| 2008. 1 ~ 2009. 3  | Research Assistant Professor                                          |
|                    | Institute for Materials Chemistry and Engineering, Kyushu University, |
|                    | Japan                                                                 |
| 2009. 4 ~          | Assistant Professor                                                   |
|                    | Graduate School of Engineering, Osaka Prefecture University, Japan    |

#### Award

| 2006.3   | Student Presentation Award in The 86 <sup>th</sup> Annual Meeting of The Chemical |
|----------|-----------------------------------------------------------------------------------|
|          | Society of Japan (The Chemical Society of Japan)                                  |
| 2011. 11 | The Prize for Paper (Japan Society of Colour Material)                            |
| 2012.7   | Osaka Prefecture University Presidential Award (Osaka Prefecture                  |
|          | University)                                                                       |

#### <u>Grant</u>

| 2010~2011        | A Grant-in-Aid for Young Scientist (B) (22750180) from the Ministry of  |
|------------------|-------------------------------------------------------------------------|
|                  | Education, Culture, Sports, Science and Technology of Japan             |
| 2010             | Inamori Foundation                                                      |
| $2011\sim 2012$  | Adaptable and Seamless Technology Transfer Program through              |
|                  | Target-driven R&D, Japan Science and Technology Agency.                 |
| $2012 \sim 2014$ | A Grant-in-Aid for Challenging Exploratory Research (24655183) from the |
|                  | Ministry of Education, Culture, Sports, Science and Technology of Japan |

#### **Memberships**

The Chemical Society of Japan The Society of Polymer Science, Japan The Society of Synthetic Organic Chemistry of Japan American Chemical Society

## **Publication List**

#### Original Papers (Representative)

- 1. <u>Maeda, T.</u>; Arikawa, S.; Nakao, H.; Yagi, S.; Nakazumi H. Linearly  $\pi$ -extended squaraine dyes enable the spectral response of dye-sensitized solar cells in the NIR region over 800 nm, *New J. Chem.*, **2013**, *37*, 701–708.
- <u>Maeda, T.</u>; Mineta, S.; Fujiwara, H.; Nakao, H.; Yagi, S.; Nakazumi, H. Conformational effect of symmetrical squaraine dyes on the performance of dye-sensitized solar cells, *J. Mater. Chem. A*, 2013, *1*, 1303–1309.
- 3. Nakao, H.; <u>Maeda, T.</u>; Nakazumi, H. Near-infrared-absorbing  $\pi$ -Extended Squarylium-based Dyes with Dicyanovinylene Substitution for Dye-sensitized Solar Cell Applications, *Chem. Lett.*, **2013**, *42*, 25–27.
- Saito, S.; <u>Maeda, T.</u>; Nakazumi, H.; Colyer, C. L. An Application of Polymer-Enhanced Capillary Transient Isotachophoresis with an Emissive Boronic Acid Functionalized Squarylium Dye as an On-Capillary Labeling Agent for Gram-positive Bacteria, *Anal. Sci.*, 2013, 29, 157–159.
- <u>Maeda, T.</u>; Tsukamoto, T.; Seto, A.; Yagi, S.; Nakazumi, H. Synthesis and Characterization of Squaraine-based Conjugated Polymers with Phenylene Linkers for Bulk Heterojunction Solar Cells, *Macromol. Chem. Phys.*, 2012, 213, 2590–2597.

- Lin, X.; Rochett, S.; Massie, T. L.; Turner, G. B.; <u>Maeda, T.</u>; Nakazumi H.; Colyer C. L. Asymmetric Mono- and Bis-squarylium Dyes as Pre-column and On-column Labels for Protein Analysis by Capillary Electrophoresis with Laser-induced Fluorescence Detection, *J. Anal. Bioanal. Techniques*, 2012, *S9.* (doi:10.4172/2155-9872.S9-001)
- Saito, S.; Massie, T. L.; <u>Maeda, T.</u>; Nakazumi, H.; Colyer, C. L. A Long-Wavelength Fluorescent Squarylium Cyanine Dyes Possessing Bromonic Acid for Sensing Monosaccharides and Glycoproteines with Enhancement in Aqueous Solution. *Sensors*, 2012, *12*, 5420–5431.
- Saito, S.; Massie, T. L.; <u>Maeda, T.</u>; Nakazumi, H.; Colyer, C. L. On-Column Labeling of Gram-Positive Bacteria with a Boronic Acid Functionalized Squarylium Cyanine Dye for Analysis by Polymer-Enhanced Capillary Transient Isotachophoresis. *Anal. Chem.*, **2012**, *84*, 2452-2458.
- Maeda, T.; Hamamura, Y.; Miyanaga, K.; Shima, N.; Yagi, S.; Nakazumi, H. Near-infrared Absorbing Squarylium Dyes with Linearly Extended π -Conjugated Structure for Dye-sensitized Solar Cell Applications. Org. Lett., 2011, 13, 5994-5997.
- 10. <u>Maeda, T.</u>; Shima, N.; Tsukamoto, T.; Yagi, S.; Nakazumi H. Unsymmetrical Squarylium Dyes with  $\pi$ -Extended Heterocyclic Components and Their Application to Organic Dye-sensitized Solar Cells. *Synth. Met.*, **2011**, *161*, 2481-2487.
- Maeda, T.; Nakao, H.; Kito, H.; Ichinose, H.; Yagi, S.; Nakazumi, H. Far-red Absorbing Squarylium Dyes with Terminally Connected Electron-accepting Units for Organic Dye-sensitized Solar Cells. *Dyes Pigms.*, 2011, 90, 275–283.
- Otsuka, H.; Nagano, S.; Kobashi, Y.; <u>Maeda, T.</u>; Takahara, A. A Dynamic Covalent Polymer Driven by Disulfide Methathesis under Photoirradiation. *Chem. Commun.*, 2009, 1150–1152.
- 13. Otsuka, H.; Muta, H.; Sakada, M; <u>Maeda, T</u>.; Takahara, A. Scrambling Reaction between Polymers Prepared by Step–growth and Chain–growth Polymerizations: Macromolecular Cross-metathesis between 1,4-Polybutadiene and Olefin-containing Polyester. *Chem. Commun.*, 2009, 1073–1075.
- Amamoto, Y.; <u>Maeda, T.</u>; Kikuchi, K.; Otsuka, H.; Takahara, A. Rational Approach to Star-like Nanogels with Different Arm Length: Formation by Dynamic Covalent Exchange and Their Imaging, *Chem. Commun.*, 2009, 689–691.
- Maeda, T.; Furusho, Y.; Sakurai, S.-i.; Kumaki, J.; Okoshi, K.; Yashima, E. Double-Stranded Helical Polymers Consisting of Complementary Homopolymers, J. Am. Chem. Soc., 2008, 130, 7938–7945.
- Furusho, Y.; Tanaka, Y.; <u>Maeda, T.</u>; Ikeda, M.; Yashima, E. Photoresponsive Double-Stranded Helices Composed of Complementary Strands, *Chem. Commun.*, 2007, 3174–3176.
- Seto, R.; <u>Maeda, T.</u>; Konishi, G.-i.; Takata, T. Synthesis and Structure of Optically Active Polyesters Containing C<sub>2</sub>-Chiral Spirobifluorene Moieties in the Main Chain, *Polym. J.*, 2007, 39, 1351–1359.
- Liu, R.; <u>Maeda, T.</u>; Kihara, N.; Harada, A.; Takata, T. Solvent-Free Synthesis of Pseudopolyrotaxane and Polyrotaxane, J. Polym. Sci., Part A: Polym. Chem., 2007, 45, 1571–1574.
- Ikari, Y.; Seto, R.; <u>Maeda, T.</u>; Takata, T. Synthesis and Properties of Optically Active Polycarbonates Having C<sub>2</sub> Chiral Spirobifluorene Skeleton in the Main Chain, *Kobunshi Ronbunshu*, 2006, 63, 512–518.
- 20. <u>Maeda, T.</u>; Furusho, Y.; Shiro, M.; Takata, T. Self-Assembly of Multinuclear Complexes with Enantiomerically Pure Chiral Binaphthoxy Imine Ligands, *Chirality*, **2006**, *18*, 691–697.
- <u>Maeda, T.</u>; Takeuchi, T.; Furusho, Y.; Takata, T. Design and Synthesis of Chiral Poly(Binaphthyl Salen Zinc Complex) and Application of the Asymmetric Field Based on Its Helical Conformation to a Catalytic Asymmetric Reaction, J. Polym. Sci., Part A: Polym. Chem., 2004, 42, 4693–4703.
- Maeda, T.; Furusho, Y.; Takata, T. Synthesis and Structure of Poly(Binaphthyl Salen Manganese Complex) and Its Application to Asymmetric Epoxidation, *Chirality*, 2002, 14, 587–590.
- 23. Furusho, Y.; <u>Maeda, T.;</u> Takeuchi, T.; Takata, T. A Rational Design of Helix: Absolute Helix Synthesis by Binaphtyl-Salen Fusion, *Chem. Lett.*, **2001**, 1020–1021.

### Reviews

<u>Maeda, T.</u>; Otsuka, H.; Takahara, A. Dynamic Covalent Polymers: Reorganizable Polymers with Dynamic Covalent Bonds, *Prog. Polym. Sci.*, **2009**, *34*, 581–604.

## <u>Books</u>

- 1. <u>Maeda, T.</u>; Takata, T.; C<sub>2</sub> Chiral Biaryl Unit-based Helical Polymers and Their Application to Asymmetric Catalysis. Itsuno, S. editor. Polymeric Chiral Catalyst Design and Chiral Polymer Synthesis, John Wiley & Sons Inc, **2011**, 267–292.
- <u>Maeda, T.</u>; Otsuka, H.; Takahara, A. Dynamic Combinatorial Methods in Materials Science. In: Miller BL, editor. Dynamic Combinatorial Chemistry in Drug Discovery, Bioorganic Chemistry, and Materials Science, John Wiley & Sons Inc, 2009, 229–260.
- Otsuka H.; Amamoto, Y.; Matsuda, Y.; <u>Maeda, T.</u>; Takahara, A. Synthesis and Reaction of Well-defined Copolymers with Thermally Exchangeable Dynamic Covalent Bonds in the Side Chains. In: Matyjaszewski, K. editor. Controlled/Living Radical Polymerization: Progress in RAFT, DT, NMR & OMRP, American Chemical Society, **2009**, 319–329.