Center for Nanosystems Julius-Maximilians-UNIVERSITÄT Chemistry **Merocyanine Dyes: Novel Materials** WÜRZBURG for Organic Electronics and Photovoltaics

A. Arjona Esteban, D. Bialas, M. Gsänger, A. Zitzler-Kunkel, M. Stolte, H. Bürckstümmer, L. Huang, F. Würthner

Universität Würzburg, Institut für Organische Chemie and Center for Nanosystems Chemistry, Am Hubland, 97074 Würzburg, Germany

N. M. Kronenberg, K. Deing, V. Steinmann, M. R. Lenze, D. Hertel, M. Graf, J. Krumrain, K. Meerholz

Department für Chemie, Universität Köln, Luxemburger Straße 116, 50939 Köln, Germany

Introduction

Photovoltaic devices based on organic compounds bear the potential for large-scale and cost-effective power generation. Especially, the investigation of organic small molecules electronic materials for organic photovoltaics and thin-film transistors (OTFTs) has attracted considerable interest due to the simple purification procedures of the compounds.

During the last years, we have developed a series of merocyanine (MC) dyes which showed power conversion efficiencies (η) of up to 6.1 % in BHJ solar cells combined with fullerene acceptor materials.^[1] Furthermore, we have investigated OTFTs with MC compounds as p-type semiconductors, and reported the first high-

Variation of the acceptor unit

H. Bürckstümmer et al., Angew. Chem. Int. Ed. **2011**, *50*, 11628.

Figure 1. UV/Vis spectra of MC dyes in CH₂Cl₂ and solar photon flux at AM 1.5 conditions (black).

Figure 2. FMO levels, band gaps of dyes and their relative position to the LUMO of $PC_{61}BM$.

Table 1. Cell characteristics of chlorobenzene solution-cast solar cells.

	MD352	MD333	EL86	HB366	HB238	MD357	HB239
λ_{max} (film) / nm	532	556	595	595	682	689	700
wt% PCBM	70	70	60	55	75	70	75
V _{oc} / V	0.63	0.73	0.96	0.94	0.72	0.47	0.68
J _{SC} / mA cm⁻²	2.9	4.0	5.8	8.3	4.5	4.0	4.0
FF	0.27	0.32	0.41	0.38	0.35	0.27	0.36
η / %	0.5	0.9	2.3	3.0	1.1	0.5	1.0

Best performance

Figure 3. Absorption and EQE spectra of the investigated solar cell.

	Table 2. Transistor characteristics.								
	<i>T</i> _s / °C	µ / cm² V ^{- 1} s ⁻¹	V _T / V	I _{on} / I _{off}	С				
L	80	0.08 - 0.09	-5±1	10 ⁶	anc				
	100	0.16 - 0.17	-5±1	10 ⁵	\Rightarrow				

References: [1] a) N. M. Kronenberg, M. Deppisch, F. Würthner, H. W. A. Lademann, K. Deing, K. Meerholz, Chem. Commun. 2008, 6489. b) H. Bürckstümmer, N. M. Kronenberg, M. Gsänger, M. Stolte, K. Meerholz, F. Würthner, J. Mater. Chem. 2010, 20, 240. c) N. M. Kronenberg, V. Steinmann, H. Bürckstümmer, J. Hwang, D. Hertel, F. Würthner, K. Meerholz, Adv. Mater. 2010, 22, 4193. d) H. Bürckstümmer, N. M. Kronenberg, K. Meerholz, F. Würthner, Org. Lett. 2010, 12, 3666. e) H. Bürckstümmer, E. V. Tulyakova, M. Deppisch, M. R. Lenze, N. M. Kronenberg, M. Gsänger, M. Stolte, K. Meerholz, F. Würthner, Angew. Chem. Int. Ed. 2011, 50, 11628. f) V. Steinmann, N. M. Kronenberg, M. R. Lenze, S. M. Graf, D. Hertel, K. Meerholz, H. Bürckstümmer, E. V. Tulyakova, F. Würthner, Adv. Energy Mater. 2011, 1, 888. g) A. Zitzler-Kunkel, M. R. Lenze, K. Meerholz, F. Würthner, Chem. Sci. 2013, 4, 2071. [2] L. Huang, M. Stolte, H. Bürckstümmer, F. Würthner, Adv. Mater. 2012, 24, 5750.