Supporting information

Synthesis of spin-labeled riboswitch RNAs using convertible nucleosides and DNA-catalyzed RNA ligation

Lea Büttner, Jan Seikowski, Katarzyna Wawrzyniak, Anne Ochmann, Claudia Höbartner

Research Group Nucleic Acid Chemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany

Table of contents

Sequence information on RNA and DNA oligonucleotides	
Tables S1, S2	page S2
Analysis of crude and purified spin-labeled RNAs	
Figures S1, S2, S3	page S3-4
Thermal melting analysis	
Tables S3, S4, Figures S4, S5	page S4-5
CW-EPR spectra of TEMPO- and proxyl labeled single strands and duplexes	
Figure S6.	page S5
9DB1*-catalyzed ligation of short RNA fragments	
Figure S7.	page S6
T4 DNA ligase-catalyzed ligation of spin-labeled RNAs	
Figure S8.	page S6
Characterization of DTT-mediated spin-label reduction	
Figure S9.	page S7
Ligation of 70-nt SAM-I fragment	
Figure S10.	page S7
Additional data for full-length SAM-I ligation	
Figure S11.	page S8
¹ H, ¹³ C and ³¹ P NMR spectra of new synthetic compounds	
Figure S12-19	page S9-11

Table S1. Unmodified RNAs prepared by solid-phase synthesis or in vitro transcription.

No	5'-Sequence-3'	m.w.	m.w.
		calcd.	found ^a
10	GACGUCGGA	2893.8	2893.1
10'	UCCGACGUC	2790.7	2789.7
11	AAGUCUCAUGUACUA	4720.9	4720.1
11'	UAGUACAUGAGACUU	4760.9	4760.8
12	GACGUCGGAAGACGUCAGUA	6469.0	6468.5
12'	UACUGACGUCUUCCGACGUC	6279.8	6279.5
13	pppGAUCAAGUGUAGUAUCU	5652.2	5651.4
15	pppGAUGUUCUAGCGCCGGA	5579.2	5578.2
17	PPPGACCUCGCAUCGUG	4661.6	4661.9
18'	CACGAUGCGAGGUCUACUGACGUCUUCCGACGUC	10826.5	10827.2
20	GUUCCCGAAAGGAUGGUGGAAUCACCA	8695.3	8694.3
21	PPPGAUGCCUUGUAACCGAAAGGGGGGAAU	8670.1	8670.5
22	UUCUUAUCAAGAGAAGCA	5724.5	5725.1
23	pppGAGGGACUGGCCCGACGAAGCUUCAGCAACCGGUGUAAUGGCGAUCAGCCAU	17048.1	n.d. ^b
25	pppGAGGGACUGGCCCGACGAAGCUUCAGCAACCGGUGUAAUGGCGAUCAGCCAU	32640.6	n.d. ^b
	GACCAACCIIGCIIAAAIICCAGCAACCIICGAACACCIIIIGGAACAIIAAGAA		

GACCAAGGUGCUAAAUCCAGCAAGCUCGAACAGCUUGGAAGAUAAGAA ^a by ESI-MS. ^b m.w. not determined by ESI-MS, correct length of transcript was confirmed by comparison with length standards on PAGE

 Table S2. Sequences of 9DB1* deoxyribozymes

No	5'-Sequence-3'
D1	TACTACACTTGAT GGATCATACGGTCGGAGGGGTTTGCCGTTTA CCGACGTC
D2	TCCGGCGCTAGAACAT GGATCATACGGTCGGAGGGGTTTGCCGTTTA AGTACATGAGACTTCC
D3	CACGATGCGAGGT GGATCATACGGTCGGAGGGGTTTGCCGTTTA ACTGACGTCTTCCGAC
D4	TCGGTTACAAGGCAT GGATCATACGGTCGGAGGGGTTTGCCGTTTA GGTGATTCCACCATCCTTTCGG
D5	GCTTCGTCGGCCAGTCCCT GGATCATACGGTCGGAGGGGTTTGCCGTTTA GCTTCTCTTGATAAG

Splints for ligation with T4 DNA ligase

S1 GCGCTAGAACATCTAGTACATGACAC for (11+p15)

S2 ACGATGCGAGGTCTACTGACGTCTTCCG (for $12{\rm +p17})$

Figure S1. Anion exchange HPLC analysis of crude and purified spin-labeled 9-mer RNAs **10**, containing Cm^{TEMPO} and Cm^{proxyl} labels, and characterization by ESI-MS. **10c**: m.w. calcd. 3061.8, found 3061.3; **10d**: m.w. calcd. 3047.8, found 3047.2.

Figure S2. Anion exchange HPLC analysis of crude and purified spin-labeled 15-mer RNAs **11a** and **11b**, containing C^{TEMPO} and C^{proxyl} labels.

Figure S3. Anion exchange HPLC analysis of crude and purified spin-labeled SAM-III riboswitch fragments 20, containing C^{TEMPO} labels.

Figure S4. Melting curves of a) 9-bp duplexes 10/10'; b) 20-bp duplexes 12/12'. (left: hyperchromicity at 250 nm, right: derivative of hyperchromicity at 250 nm). RNA concentration: 4 μ M, in 10 mM potassium phosphate, pH 7.0, 150 mM NaCl.

C(11 un	nmod)	CTEMPO	(11a)	C ^{proxyl} ((11b)	CmTEMP	^D (11c)	Cm ^{proxyl}	(11d)
$conc^a / \mu M$	Tm / °C	$conc / \mu M$	Tm / °C	$conc / \mu M$	Tm / °C	$conc / \mu M$	Tm / °C	$conc / \mu M$	Tm / °C
1.7	62.4	1.7	57.4	1.9	56.5	1.5	58.4	1.6	57.7
3.7	64.0	2.4	58.7	2.8	57.9	3.5	59.1	3.5	58.4
4.9	64.2	5.7	59.3	6.0	58.5	7.5	60.1	7.3	59.2
6.4	64.5	7.3	59.5	7.7	58.8	9.3	60.1	8.9	59.6
9.4	64.8	9.0	60.3	9.9	59.5	10.9	60.9	9.2	59.8
17.1	66.2	17.8	61.6	18.0	60.7	19.8	62.2	16.8	61.0
25.0	67.2	26.4	62.4	26.4	61.6	32.2	63.5	28.6	61.9

Table S3. Concentration-dependent melting temperatures for duplexes 11/11'.

^a concentration calculated from absorbance at 260 nm at Tm. bold values are given in Table 2.

 Table S4. Thermodynamic parameters for duplexes 11/11'.

	•	-	-	
No	label	ΔH°	ΔS°	ΔG°_{298}
		kcal.mol ⁻¹	cal.(mol.K) ⁻¹	kcal.mol ⁻¹
11	-	-135	-373	-23.8
11a	CTEMPO	-129	-361	-21.4
11b	C ^{proxyl}	-125	-351	-20.8
11c	Cm ^{TEMPO}	-133	-373	-22.1
11d	Cm ^{proxyl}	-148	-419	-23.2

(error: ΔH° , ΔS° 5-10%, ΔG° 2-5%)

Figure S5. Van't Hoff plot for thermal analysis of 15-mer RNA duplexes **11/11'**. Analysis of the bimolecular melting transition of the non-selfcomplementary duplex follows equation (1); thermodynamic parameters are obtained from slope and intercept of the linear regression of the data in the plot of ln(c) vs $1/T_m$.

equation (1):
$$\frac{1}{T_m} = \frac{R}{\Delta H^{\circ}} \ln c_{tot} + \frac{\Delta S^{\circ} - R \ln 4}{\Delta H^{\circ}}$$

Figure S6. Comparison of CW-EPR spectra TEMPO and proxyl-labeled RNAs in single strand and duplex conformations. a) single-strands of RNA **11c** and **11d**; b) duplexes **11c/11'**, **11d/11'**, c) duplexes **10c/10'**, **10d/10'**. 200 µM spin-labeled RNA (1.5 equiv of complementary strand for duplexes), in 2.5 mM potassium phosphate, pH 7.0, 30 mM NaCl, room temperature.

Figure S7. 9DB1*-catalyzed ligation of 9-mer **10/10b** and 17-mer **13**. 15 μM each RNA substrate, 50 mM HEPES, pH 7.5, 20 mM MnCl₂, 150 mM NaCl, 2 mM KCl, 25°C, 15 h.

Figure S8. T4 DNA ligase-catalyzed splinted ligation of 15-mers **11**, **11c**, **11d** and 17-mer **15**. 15 μ M each RNA substrate, 1x T4 DNA ligase buffer, 0.5 u/ μ LT4 DNA ligase, 37°C, 6 h. * byproduct produced with unmodified RNA (likely a cyclization product), # reduced byproduct from spin-labeled RNAs.

Figure S9. HPLC analysis of TEMPO reduction. Comparison with authentic piperidine-substituted RNA.

Figure S10. HPLC analysis of 9DB1*-catalyzed ligation of 22/22a to 23 to generate the first 70 nt of the SAM-I riboswitch sequence. (in b) the transcript 23 was used in 1.5-fold excess over the spin-labeled RNA 22a)

Figure S11. a) Kinetics of 9DB1*-catalyzed synthesis of SAM-I RNA using 5'-³²P-labeled **22** and transcript **25**. 10 μ M RNA, 20 mM MnCl₂, 50 mM HEPES pH 7.5, 150 mM NaCl, 2 mM KCl, 37°C. b) HPLC analysis of preparative ligation (start and after 5 h). right: analytical HPLC traces of transcript **25** and isolated ligation product, full-length spin-labeled SAM-I RNA (isolated yield: 30%).

NMR spectra of new compounds

Figure S13. ¹³C NMR (100 MHz) of compound **3**.

88 88 88 <2565 5.62 -5.98 DMT-O-Me 2'-O-Me H-C(2') H-C(1′) , H-C(5) H-C(5') H-C(6) OH-C(3') H-C(3') H-C(4) 0.89 上 2.40 <u>–</u> 3.86 <u>–</u> 0.82 I 0:90 I 10.87 Ч ተ ተ ክሥተ 0.78 1.31 5.37 3.00 2.94 0.74 9.5 . 9.0 . 8.5 8.0 7.5 7.0 -0.5 6.5 6.0 5.5 5.0 4.5 f1 (ppm) 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 Figure S16. ¹H NMR (400 MHz) of compound 8. -171.49 130.57 130.68 129.90 128.57 1128.34 1128.34 113.52 -145.85 -144.94 -144.72 -- 95.23 -88.69 -84.22 -83.47 --68.14 ~61.13 ~59.31 ~55.74 190 180 170 160 150 140 130 120 110 ò 100 f1 (ppm) 90 80 70 60 50 40 30 20 10

Figure S17. ¹³C NMR (100 MHz) of compound 8.

.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 3.5 3.0 2.5 2.0 1.5 0.5 0. 4.5 f1 (ppm) 4.0 1.0 Figure S18. ¹H NMR (400 MHz) of compound 9.

70 160 150 140 . 130 120 110 100 90 80 70 60 50 f1 (ppm) 40 30 20 10 0 -10 -20 -30 -40 -50 -6 Figure S19. ³¹P NMR (162 MHz) of compound 9.